

Linear Cryptanalysis of PRINTcipher

Martin Ågren Thomas Johansson

Department of Electrical and Information Technology

Lund University

111212 / Chennai

Outline

1 Introduction

Contribution PRINTCIPHER Linear Cryptanalysis

2 Linear Cryptanalysis of PRINTcipher

8 Guessing Bits for Encryption and Decryption

4 How to Find Many Samples

5 Conclusion

Outline

1 Introduction

Contribution PRINTCIPHER Linear Cryptanalysis

2 Linear Cryptanalysis of PRINTcipher

3 Guessing Bits for Encryption and Decryption

How to Find Many Samples

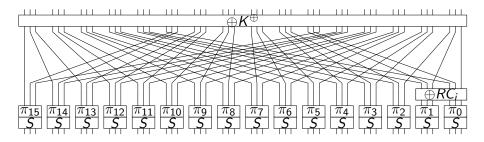
5 Conclusion

Since PRINTCIPHER is made for burnt-in keys, it is "easy" to avoid weak keys, if there are any.

Previous work relates around weak keys:

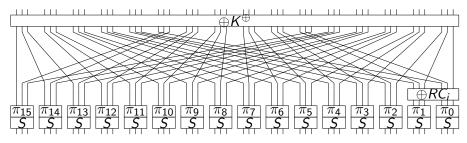
- ► Leander et al. at Crypto on > 0 rounds. Remaining keys: $2^{80} - 2^{52} \approx 2^{80}$.
- ► Karakoç et al. at SAC on 31 rounds. Remaining keys: ≈ 2^{79.8}.
- ► This work on 29 rounds. Remaining keys: ≈ 2⁷⁸.

PRINTCIPHER

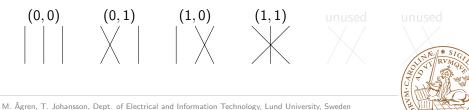


- ▶ 48-bit plaintext, ciphertext and state, 48 rounds.
- ► Same XOR key $K^{\oplus} = (k_{47}^{\oplus}, \dots, k_0^{\oplus})$ in all rounds.
- Same permutation key $K^{\pi} = (k_{31}^{\pi}, \dots, k_0^{\pi})$ in all rounds.

$\mathsf{PRINT}_{\mathrm{CIPHER}}$



- We label bit positions using (b, c), $0 \le b < 16$, $0 \le c < 3$.
- $(k_{2b+1}^{\pi}, k_{2b}^{\pi})$ determines how permutation π_b acts on the bits at positions (b, 2), (b, 1), (b, 0).



$\mathsf{PRINT}_{\mathrm{CIPHER}}$

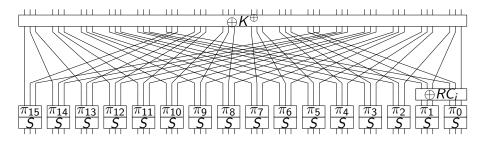


Table:
$$S(x_2, x_1, x_0) = (y_2, y_1, y_0)$$
.

								111
$S(\mathbf{x})$	000	001	011	110	111	100	101	010

- We only use optimal characteristics.
- One-round characteristic holds with probability $\frac{1}{2} + 2^{-2}$.
- ▶ *r*-round characteristic holds with probability $\frac{1}{2} + 2^{-r-1}$.
- We call $\epsilon = \operatorname{Prob}(\cdot) \frac{1}{2} = 2^{-r-1}$ the *bias*.

•
$$\operatorname{Prob}(\beta \cdot C = \alpha \cdot P) = \frac{1}{2} \pm 2^{-r-1}.$$

•
$$\operatorname{Prob}(\beta \cdot C = \alpha \cdot P) = \frac{1}{2} \pm 2^{-r-1}.$$

• $\operatorname{Prob}(c_{47} = p_{47}) = \frac{1}{2} + 2^{-r-1}.$

To use a property with bias *ϵ*, we need *ϵ*⁻² samples.
 ϵ = 2^{-r-1} ⇒ 2^{2r+2} samples.

► To use a property with bias ϵ , we need ϵ^{-2} samples.

•
$$\epsilon = 2^{-r-1} \Rightarrow 2^{2r+2}$$
 samples.

- One sample is most often one plaintext-ciphertext pair.
- ▶ 2^{48} plaintext-ciphertext pairs \Rightarrow 23 rounds.
- ▶ 24 rounds ⇐ 2⁵⁰ samples "⇔" 2² samples per plaintext-ciphertext pair.

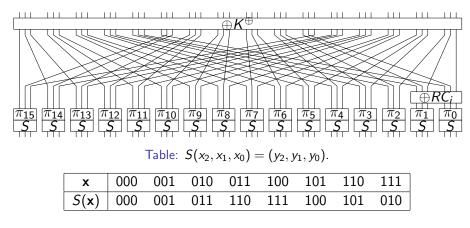
Outline

Introduction Contribution PRINTCIPHER Linear Cryptanalysi

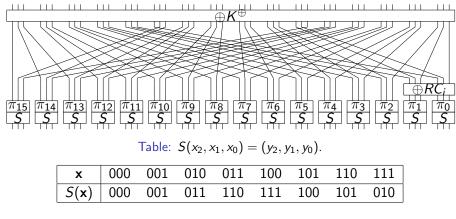
2 Linear Cryptanalysis of PRINTcipher

- **3** Guessing Bits for Encryption and Decryption
- How to Find Many Samples

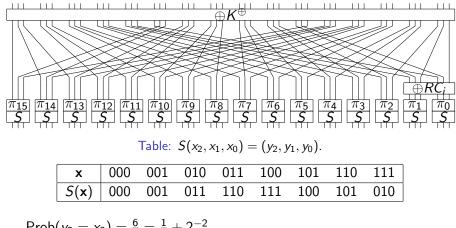
5 Conclusion



 $\mathsf{Prob}(y_2 = x_2) = \ldots$



 $Prob(y_2 = x_2) = \frac{6}{8} = \frac{1}{2} + 2^{-2}$



$$Prob(y_2 = x_2) = \frac{1}{8} - \frac{1}{2} + 2^{-2}$$

$$Prob(y_1 = x_1) = \frac{1}{2} + 2^{-2}$$

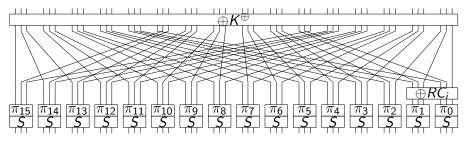


Table:
$$S(x_2, x_1, x_0) = (y_2, y_1, y_0)$$
.

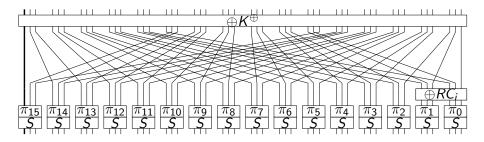
	000							
$S(\mathbf{x})$	000	001	011	110	111	100	101	010

$$Prob(y_2 = x_2) = \frac{6}{8} = \frac{1}{2} + 2^{-2}$$

$$Prob(y_1 = x_1) = \frac{1}{2} + 2^{-2}$$

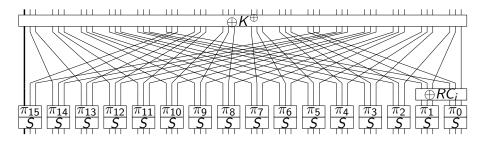
$$Prob(y_0 = x_0 \oplus 1) = \frac{1}{2} + 2^{-2}$$

A First Linear Characteristic



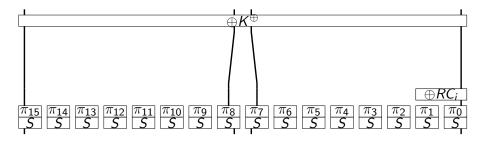
- ▶ (15,2) is permuted to (15,2) for half of the keys.
- Remember: $Prob(y_2 = x_2) = \frac{1}{2} + 2^{-2}$.

A First Linear Characteristic



- ▶ (15,2) is permuted to (15,2) for half of the keys.
- Remember: $Prob(y_2 = x_2) = \frac{1}{2} + 2^{-2}$.
- $\operatorname{Prob}(c_{47} = p_{47} \oplus k_{47}^{\oplus}) = \frac{1}{2} + 2^{-2}.$
- More rounds: $\operatorname{Prob}(c_{47} = p_{47} \oplus k_{47}^{\oplus} \cdot (r \mod 2)) = \frac{1}{2} + 2^{-r-1}$.

All Single-Round Characteristics



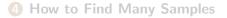
- There are four different iterated single-round trails
- We can extend them to *r* rounds.
- Same bits of K^{π} key classes do not shrink.

Outline

Introduction Contribution PRINTCIPHER Linear Cryptanaly

2 Linear Cryptanalysis of PRINTcipher

8 Guessing Bits for Encryption and Decryption



5 Conclusion

We want to use

$$\mathsf{Prob}(c_{47} = p_{47} \oplus k_{47}^{\oplus}) = \frac{1}{2} + 2^{-24}$$

on 23 rounds, but attack more rounds.

We want to use

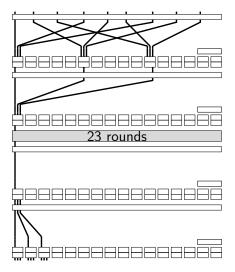
$$\mathsf{Prob}(c_{47} = p_{47} \oplus k_{47}^{\oplus}) = \frac{1}{2} + 2^{-24}$$

on 23 rounds, but attack more rounds.

- Add some rounds of partial encryption/decryption.
- ▶ We need to guess the bits involved in these calculations.
- Good guess \Rightarrow true "inner bits" \Rightarrow we should observe a bias
- ▶ Bad guess ⇒ we should not observe bias?!?

$$\mathsf{Prob}(c_{47}^2 = c_{47}^{25} \oplus k_{47}^{\oplus}) = rac{1}{2} + 2^{-24}$$

- Use several counters, initialized at zero.
- For each plaintext-ciphertext pair...
 - For each partial guess...
 - Do partial encryption/decryption.
 - ▶ If $c_{47}^2 = c_{47}^{25} \oplus k_{47}^{\oplus}$, increase the counter for this guess.
- ▶ Now, the correct guess should have a high counter value.



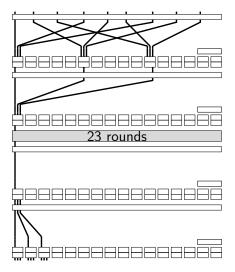
15155

- For each plaintext-ciphertext pair...
 - categorize it according to the active bits

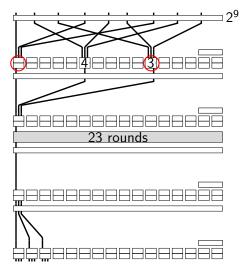
- For each plaintext-ciphertext pair...
 - categorize it according to the active bits
- ▶ For each "plaintext prototype"...
 - For each relevant partial guess...
 - Do partial encryption to access the inner bit c_{47}^2 .

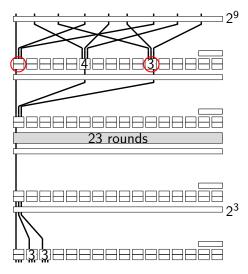
- For each plaintext-ciphertext pair...
 - categorize it according to the active bits
- ▶ For each "plaintext prototype"...
 - For each relevant partial guess...
 - Do partial encryption to access the inner bit c_{47}^2 .
- ▶ For each "ciphertext prototype"...
 - For each relevant partial guess...
 - Do partial decryption to access the inner bit c_{47}^{25} .

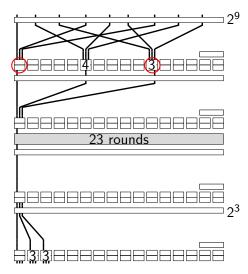
- For each plaintext-ciphertext pair...
 - categorize it according to the active bits
- ▶ For each "plaintext prototype"...
 - ▶ For each relevant partial guess...
 - Do partial encryption to access the inner bit c_{47}^2 .
- ▶ For each "ciphertext prototype"...
 - For each relevant partial guess...
 - Do partial decryption to access the inner bit c_{47}^{25} .
- For each partial guess...
 - For each "plaintext-ciphertext prototype"...
 - ▶ If $c_{47}^2 = c_{47}^{25} \oplus k_{47}^{\oplus}$, increase the counter for this guess.
 - The increase depends on how many such pairs we saw.
- ▶ Now, the correct guess should have a high counter value.



15155

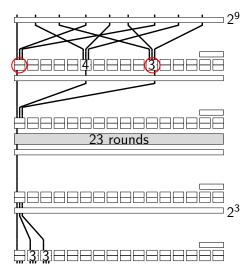






Total guesswork: $N = 2^{13} \cdot 3^3 \approx 2^{17.75}$

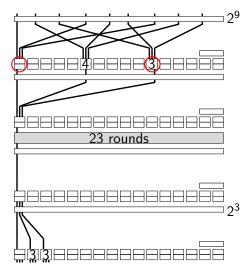
Encryption: $2^{11} \cdot 3 \approx 2^{12.6}$ Decryption: $2^3 \cdot 3^2 \approx 2^{6.2}$



Total guesswork: $N = 2^{13} \cdot 3^3 \approx 2^{17.75}$

 $\begin{array}{l} \mbox{Encryption:} \ 2^{11} \cdot 3 \approx 2^{12.6} \\ \mbox{Decryption:} \ 2^3 \cdot 3^2 \approx 2^{6.2} \end{array}$

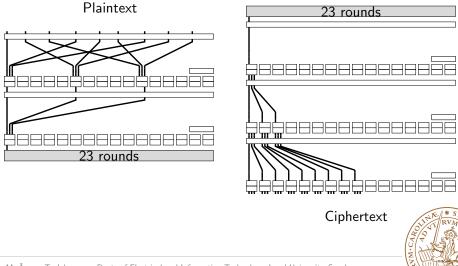
Total calculations: $2^9\cdot 2^{11}\cdot 3+2^9\cdot 2^3\cdot 3^2\approx 2^{21.6}$



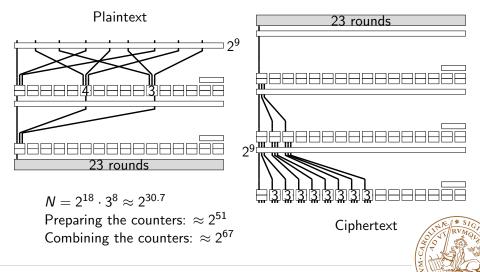
Categorizing the data: 2^{48}

Preparing the counters: 2^{22}

Combining the counters: $2^{9+9} \cdot N \approx 2^{36}$



28 Rounds



Outline

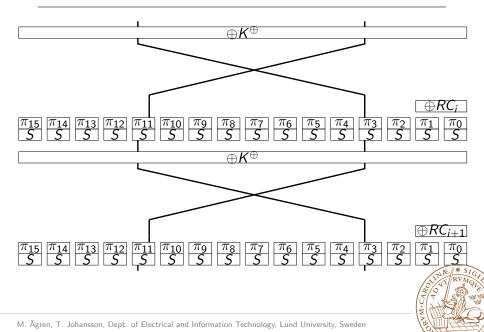
Introduction Contribution PRINTCIPHER Linear Cryptanal

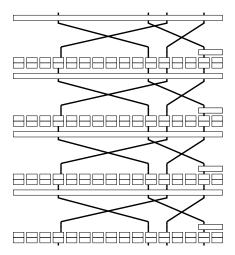
2 Linear Cryptanalysis of PRINTcipher

3 Guessing Bits for Encryption and Decryption

4 How to Find Many Samples

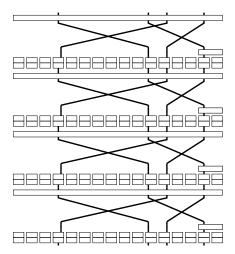
5 Conclusion





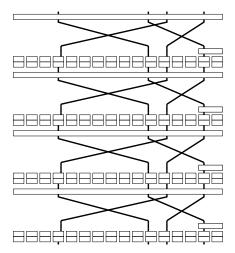
$$(k_{25}^{\pi}, k_{24}^{\pi}, k_{10}^{\pi}, k_{9}^{\pi}, k_{3}^{\pi}) = (1, 0, 0, 0, k_{2}^{\pi})$$

$$Prob(c_4 = p_4) = \frac{1}{2} + 2^{-r-1}$$



$$(k_{25}^{\pi}, k_{24}^{\pi}, k_{10}^{\pi}, k_{9}^{\pi}, k_{3}^{\pi}) = (1, 0, 0, 0, k_{2}^{\pi})$$

 $\operatorname{Prob}(c_{4} = p_{4}) = \frac{1}{2} + 2^{-r-1}$
 $\operatorname{Prob}(c_{12} = p_{12}) = \frac{1}{2} + 2^{-r-1}$

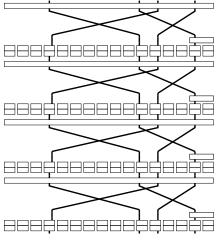


$$(k_{25}^{\pi}, k_{24}^{\pi}, k_{10}^{\pi}, k_{9}^{\pi}, k_{3}^{\pi}) = (1, 0, 0, 0, 0, k_{2}^{\pi})$$

 $\operatorname{Prob}(c_{4} = p_{4}) = \frac{1}{2} + 2^{-r-1}$
 $\operatorname{Prob}(c_{12} = p_{12}) = \frac{1}{2} + 2^{-r-1}$
 $\operatorname{Prob}(c_{17} = p_{17}) = \frac{1}{2} + 2^{-r-1}$

Four Rounds of $\mathsf{PRINT}_{\mathrm{CIPHER}}$

F



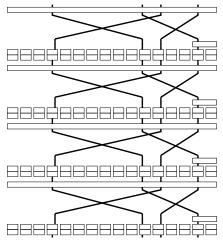
$$k_{25}^{\pi}, k_{24}^{\pi}, k_{10}^{\pi}, k_{9}^{\pi}, k_{3}^{\pi}) = (1, 0, 0, 0, k_{2}^{\pi})$$

$$Prob(c_{4} = p_{4}) = \frac{1}{2} + 2^{-r-1}$$

$$Prob(c_{12} = p_{12}) = \frac{1}{2} + 2^{-r-1}$$

$$Prob(c_{17} = p_{17}) = \frac{1}{2} + 2^{-r-1}$$

$$Prob(c_{37} = p_{37}) = \frac{1}{2} + 2^{-r-1}$$

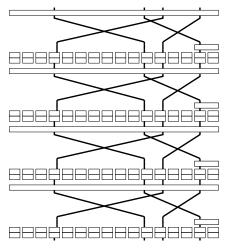


$$(k_{25}^{\pi}, k_{24}^{\pi}, k_{10}^{\pi}, k_{9}^{\pi}, k_{3}^{\pi}) = (1, 0, 0, 0, k_{2}^{\pi})$$

 $\operatorname{Prob}(c_{4} = p_{4}) = \frac{1}{2} + 2^{-r-1}$
 $\operatorname{Prob}(c_{12} = p_{12}) = \frac{1}{2} + 2^{-r-1}$
 $\operatorname{Prob}(c_{17} = p_{17}) = \frac{1}{2} + 2^{-r-1}$
 $\operatorname{Prob}(c_{27} = p_{27}) = \frac{1}{2} + 2^{-r-1}$

I have cheated: round constants and bits of K^{\oplus} .

Four samples for the same basic property!



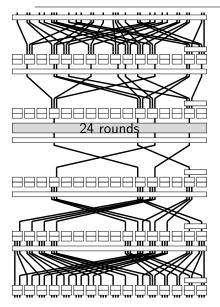
We can control the round constants. Pile to eight rounds \Rightarrow bits of K^{\oplus} cancel.

We have created eight-round trails with bias 2^{-r-1} that allow four samples per plaintext-ciphertext pair. \Rightarrow

We can construct a 24-round characteristic that we can actually distinguish!

Four samples for the same basic property!

29 Rounds



$$N=2^{63}\cdot 3^3\approx 2^{67}$$

Preparing the counters: $\approx 2^{55}$

Combining the counters: $\approx 2^{76}$

Finalizing the counters: $N \approx 2^{67}$

Brute force: 2⁷⁵!?!

Outline

Introduction Contribution PRINTCIPHER Linear Cryptanal

2 Linear Cryptanalysis of PRINTcipher

- **3** Guessing Bits for Encryption and Decryption
- How to Find Many Samples

Conclusion

Conclusion

- There are several large class of weak keys.
- ▶ We can find several samples per plaintext-ciphertext pair.
- We reach 29 rounds.

Open problems

- ▶ Reach more rounds (e.g., all 48).
- Use large key classes (e.g. $2^{8}0$ or at least $> 2^{51}$).
- We probably need to do something quite different.

Thank you!

