Towards a Provably Secure DoS-Resilient Key Exchange Protocol with PFS¹

L. Kuppusamy^{*†} J. Rangasamy^{*†} D. Stebila^{*} C. Boyd^{*} J.M. González Nieto^{*}

* Information Security Institute Queensland University of Technology, Brisbane, Australia

[†]Society for Electronic Transactions and Security Chennai, India

IndoCrypt 2011

¹This work was supported by the Australia-India Strategic Research Fund project TA020002.

Kuppusamy, Rangasamy, Stebila, Boyd and González Nieto DoS-resilient key Exchange protocol with PFS

Outline

Introduction

- Denial-of-service in Key Establishment
- Just Fast Keying

2 Contributions

- BPV-JFK
- DoS-BPV-JFK

3 Conclusion

Denial-of-service in Key Establishment Just Fast Keying

Key Establishment Protocols

Goals

Use cryptographic techniques to


- Authenticate each other
- Share a secret key

Limitations

Involve computationally expensive operations such as modular exponentiation

- This make the server to set a limit on the number of connections at a time
- Vulnerable to a denial-of-service attack

Denial-of-service in Key Establishment Just Fast Keying

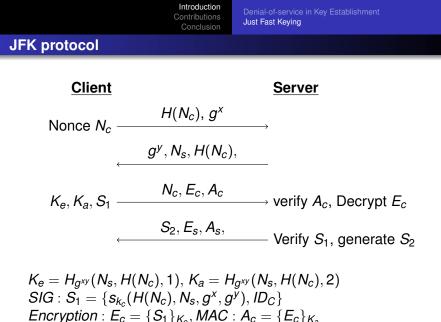
- Denial-of-service (DoS) is one of the most common real world network security attacks.
- DoS prevents users from accessing their legitimate resources. It is an attack on *availability*.
- Highly publicised attacks have affected nation states: Estonia (April 2007); Georgia (August 2008); United States and South Korea (July 2009).
- DoS attacks against sites of your choice are readily available for hire.
- Google (June 2009): News searches sparked by Michael Jackson's death were initially mistaken for an automated denial of service attack.

Denial-of-service in Key Establishment Just Fast Keying

Types of DoS attacks

- Brute force attacks: attacker generates sufficiently many legitimate-looking requests to overload a server's resources. Does not require special knowledge of protocol specification or implementation.
- Semantic attacks: attacker tries to exploit vulnerabilities of particular network protocols or applications. Requires special knowledge of protocol specification and implementation.

Denial-of-service in Key Establishment Just Fast Keying


Two party DoS-resilient key exchange protocols

- Just Fast Keying (JFK)
- Client Aided-RSA (CA-RSA)
- Modified Internet Key Exchange (MIKE)
- Host Identity Protocol (HIP)

Denial-of-service in Key Establishment Just Fast Keying

Just Fast Keying (JFK)

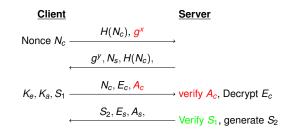
- W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D. Keromytis, and O. Reingold.
 Just Fast Keying: Key agreement in a hostile Internet.
 ACM Transactions on Information and System Security, 7(2):1–30, May 2004.
 - a simple, efficient and secure key exchange protocol
 - well known for its DoS resistant techniques such as re-use of Diffie-Hellman (DH) ephemeral keys
 - achieves only adaptive forward secrecy due to the re-use technique
 - claimed secure in the CK01 model under the Decisional Diffie-Hellman assumption

 $S_{2} = s_{k_{s}}(H(N_{c}), N_{s}, g^{x}, g^{y}, ID_{c}), E_{s} = \{S_{2}\}_{K_{e}}, A_{c} = \{E_{s}\}_{K_{a}}$

Kuppusamy, Rangasamy, Stebila, Boyd and González Nieto DoS-resilient key Exchange protocol with PFS

Denial-of-service in Key Establishment Just Fast Keying

Cost-based Analysis of JFK

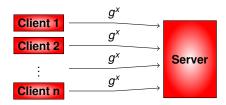

Smith et al analysed JFK using Meadows Cost-based framework and found two computational based DoS attacks

An Overview of Meadows cost-based framework

- proposed to analyse DoS Vulnerabilities in network protocols
- Assigns cost to every action of the Client and server
- Calculate the total cost for each party in a specific run of the protocol
- If the total cost of the server (to send a response) is greater than the total cost (to send a message), then the protocol is vulnerable to a DoS attack

Denial-of-service in Key Establishment Just Fast Keying

Smith et al's attacks on JFK


$$K_e = H_{g^{xy}}(N_s, H(N_c), 1), K_a = H_{g^{xy}}(N_s, H(N_c), 2)$$

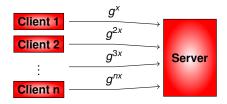
Attack 1

- by a direct application of Meadows framework
- goal is to force the server to perform MAC (A_c) verification
- due to the expensive K_a operation
- fix: to incorporate client puzzles

Denial-of-service in Key Establishment Just Fast Keying

Smith et al's attack contd.

Attack 2


- possible due to the presence of co-ordinated initiators
- possible when both clients and server re-use g^x and g^y
- goal is to force the server to perform sig S_1 verification
- Idea: g^{xy} can be amortised across all sessions
- fix: binding the ephemeral keys to a specific session. for example, set the shared DH exponential as g^{xyr}, where r is a function of session specific parameters

BPV-JFK DoS-BPV-JFK

- A new DoS vulnerability in JFK
- Security flaw: Basic JFK with re-use technique may require GDH assmption not the DDH assumption
- Modified JFK protocol using BPV technique
 - secure under the DDH assumption
 - achieves perfect forward secrecy
- Analysed in Stebila et al model for Dos resilience

- possible due to the presence of co-ordinated initiators
- possible when only the server re-use the DH ephemeral keys
- Idea: the malicious client computes ephemeral DH key g^x for one session and then computes other ephemeral DH keys as g^{nx} , where n = 2, 3, ... Similar idea is applicable to the computation of the shared DH exponentials (g^{nxy}) .

BPV Generator (Boyko, Peinado, Venkatesan Eurocrypt'98)

 Method for computing DH exponential in few multiplications.

BPV Generator

Let *p* be a DSA modulus such that the prime *q* divides p - 1. Select a random element *g* of order *q* in the multiplicative group \mathbb{Z}_p^* . Let *N* and ℓ be integer parameters such that $N \ge \ell \ge 1$.

- Pre-processing run once. Generate N random integers x₁, x₂, ... x_N ∈ Z_q. Compute X_i = g^{x_i} mod p for each i and store the pair (x_i, X_i) in a table.
- Whenever a pair (y, g^y) is needed: Generate a random set $S \subseteq_R \{1, ..., N\}$ such that $|S| = \ell$. Compute $y = \sum_{j \in S} x_j \mod q$. If y = 0, stop and generate S again. Otherwise compute $g^y = \prod_{j \in S} g^{x_j} \mod p$ and return (y, g^y) .

BPV-JFK DoS-BPV-JFK

Statistical indistinguishability of BPV generator

Nguyen etal

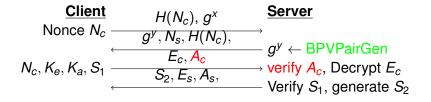
Let *q* be a prime, and let $N \ge \ell \ge 1$. Then,

$$\frac{1}{q^N}\sum_{\vec{x}\in\mathbb{Z}_q^N}\sum_{y\in\mathbb{Z}_q}\left|\Pr_{S\subseteq[1,N]:|S|=\ell}\left(\sum_{j\in S}x_j\equiv y \mod q\right) - \frac{1}{q}\right| \leq \sqrt{q/\binom{N}{\ell}}$$

- for appropriate choices of the N and ℓ values, the BPV generator outputs almost all the elements of Z_q and the proportion of elements not output by the BPV generator is very small
- the result holds regardless of whether the pre-computed x_i's are known to a distinguisher or not

BPV-JFK DoS-BPV-JFK

Efficiency


 choose a bigger value of N (polynomial in log q) to make ℓ smaller.

			Runtime		
N	ℓ	$\sqrt{q/\binom{N}{\ell}}$	BPV-Pre (s)	BPV-Gen (ms)	
$2^{11} = 2048$	48	2 ⁻⁸²	0.939	0.226	
$2^{12} = 4096$	40	2 ⁻⁸⁰	1.892	0.196	
2 ¹³ = 8192	35	2 ⁻⁸¹	3.758	0.168	
$2^{14} = 16384$	31	2 ⁻⁸¹	7.527	0.156	
$2^{16} = 65536$	26	2 ⁻⁸³	30.148	0.134	

- a single 160-bit modular exponentiation takes 0.461 ms.
- The advantage factor of BPV generation over modular exponentiation based on the parameter values listed in Table is between 2 and 3.4.

BPV-JFK DoS-BPV-JFK

BPV-JFK

$$\begin{split} & \mathcal{K}_{e} = \mathcal{H}_{g^{xy}}(N_{s}, \mathcal{H}(N_{c}), 1), \ \mathcal{K}_{a} = \mathcal{H}_{g^{xy}}(N_{s}, \mathcal{H}(N_{c}), 2) \\ & SIG : S_{1} = \{s_{k_{c}}(\mathcal{H}(N_{c}), N_{s}, g^{x}, g^{y}), ID_{C}\} \\ & \textit{Encryption} : E_{c} = \{S_{1}\}_{\mathcal{K}_{e}}, MAC : \mathcal{A}_{c} = \{E_{c}\}_{\mathcal{K}_{a}} \\ & S_{2} = s_{\mathcal{K}_{s}}(\mathcal{H}(N_{c}), N_{s}, g^{x}, g^{y}, ID_{C}), \ E_{s} = \{S_{2}\}_{\mathcal{K}_{e}}, \mathcal{A}_{c} = \{E_{s}\}_{\mathcal{K}_{a}} \end{split}$$

- BPV-JFK achieves Perfect Forward Secrecy (PFS)
- BPV-JFK is not fully DoS resilient. DoS-attack is possible if the server send bogus MAC A_c in the third message

BPV-JFK DoS-BPV-JFK

DoS Resistance in BPV-JFK

- Stebila etal gave a generic technique to transform any protocol into a DoS resistant protocol
- The technique uses strongly difficult interactive client puzzles as a DoS countermeasure and message authentication codes (MAC) for integrity of stateless connections.
- The server in the protocol must not perform any expensive operation until it verifies the MAC and the puzzle solution.

Introduction Contributions DoS-BPV-JFK Conclusion DoS-BPV-JFK Client Server $H(N_c), g^x$ Nonce N_c MAC, CPuz, g^y , N_s , $H(N_c)$, \leftarrow BPV pair gen $K_e, K_a, S_1 \xrightarrow{\text{MAC, PuzSoln, } N_c, E_c, A_c}$ verify MAC, CPuz, A_c , Decrypt E_c $S_2, E_s, A_s,$ Verify S_1 , generate S_2

$$\begin{split} & K_e = H_{g^{xy}}(N_s, H(N_c), 1), \, K_a = H_{g^{xy}}(N_s, H(N_c), 2) \\ & SIG: \, S_1 = \{s_{k_c}(H(N_c), N_s, g^x, g^y), \, ID_C\} \\ & Encryption: \, E_c = \{S_1\}_{K_e}, \, MAC: \, A_c = \{E_c\}_{K_a} \\ & S_2 = s_{k_s}(H(N_c), N_s, g^x, g^y, ID_C), \, E_s = \{S_2\}_{K_e}, \, A_c = \{E_s\}_{K_a} \end{split}$$

Kuppusamy, Rangasamy, Stebila, Boyd and González Nieto

DoS-resilient key Exchange protocol with PFS

BPV-JFK DoS-BPV-JFK

Comparison

Protocol	Cost-based vulnerability	Security assumptions	Perfect Forward Secrecy	DoS- resilience
JFK	Yes	GDH, ROM	Only with no reuse	No
DoS-JFK	No	GDH, ROM	Only with no reuse	Yes
BPV-JFK	No	DDH	Yes	No
DoS-BPV-JFK	No	DDH	Yes	Yes

Table: Comparison of properties of JFK-based protocols

Conclusion

- DoS may arise in a number of ways. Our focus is on resource exhaustion DoS attacks (on network protocols)
- we propose to use a technique introduced by Boyko et al. to achieve PFS and to resist the identified attack on JFK
- BPV-JFK is secure in CK01 model under the DDH assumption
- BPV-JFK is DoS resilient after incorporating client puzzles and secure MACs.

Thank You all

Kuppusamy, Rangasamy, Stebila, Boyd and González Nieto DoS-resilient key Exchange protocol with PFS