# Analysis of the Parallel Distinguished Point Tradeoff

Jin Hong, \*Ga Won Lee, Daegun Ma

Seoul National University

13/12/2011

 ${\mathcal N}$  : key space with size N.

 $F: \mathcal{N} \to \mathcal{N}$  : one-way function

#### The inversion problem

For a given inversion target F(x) = y, Find x.

 ${\mathcal N}$  : key space with size N.

 $F: \mathcal{N} \to \mathcal{N}$  : one-way function

#### The inversion problem

For a given inversion target F(x) = y, Find x.

 $\mathcal{N}$  : key space with size N.

 $F: \mathcal{N} \to \mathcal{N}$  : one-way function

#### The inversion problem

For a given inversion target F(x) = y, Find x.

#### Two extreme methods

- Exhaustive search : T=N, M=1,
- Dictionary attack : T=1, M=N,

where T is total online time, M is storage size.

# Time Memory Tradeoff(Hellman)

- Pre-computation phase :
   pre-compute sufficiently many (a, F(a)) pairs, and
   store a digest of the computation in a table smaller than the
   complete dictionary.
- Online phase:
   given an inversion target, using the table, find the answer in time
   shorter than required by exhaustive search.

#### R. Rivest

• Choose parameters m, t satisfying  $mt^2 = N$ .

#### R. Rivest

- Choose parameters m, t satisfying  $mt^2 = N$ .
- **DP**(distinguished point) is an element satisfying a certain pre-set property. Here, the prob. of DP occurrence is set to  $\frac{1}{t}$ . (ex.  $X \equiv 0 \mod t$ )

#### R. Rivest

- Choose parameters m, t satisfying  $mt^2 = N$ .
- **DP**(distinguished point) is an element satisfying a certain pre-set property. Here, the prob. of DP occurrence is set to  $\frac{1}{t}$ . (ex.  $X \equiv 0 \mod t$ )
- 1. Construct t many DP matrices using F.
  - each chain is set to end on a DP.

$$m \begin{cases} \operatorname{SP}_1 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots & \xrightarrow{F} \circ = \operatorname{EP}_1 : \operatorname{DP} \\ \operatorname{SP}_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots & \xrightarrow{F} \cdots & \xrightarrow{F} \circ = \operatorname{EP}_2 : \operatorname{DP} \\ & \vdots \\ \operatorname{SP}_m = \circ \xrightarrow{F} \cdots & \xrightarrow{F} \circ & = \operatorname{EP}_m : \operatorname{DP} \end{cases}$$

: A single DP matrix

#### R. Rivest

- Choose parameters  $m,\ t$  satisfying  $mt^2=N.$
- **DP**(distinguished point) is an element satisfying a certain pre-set property. Here, the prob. of DP occurrence is set to  $\frac{1}{t}$ . (ex.  $X \equiv 0 \mod t$ )
- 1. Construct t many DP matrices using F.
  - each chain is set to end on a DP.

$$m \begin{cases} \operatorname{SP}_1 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots & \xrightarrow{F} \circ = \operatorname{EP}_1 : \operatorname{DP} \\ \operatorname{SP}_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots & \xrightarrow{F} \cdots & \xrightarrow{F} \circ = \operatorname{EP}_2 : \operatorname{DP} \\ & \vdots \\ \operatorname{SP}_m = \circ \xrightarrow{F} \cdots & \xrightarrow{F} \circ & = \operatorname{EP}_m : \operatorname{DP} \end{cases}$$

: A single DP matrix

2. Store  $\{(SP_j, EP_j)\}_{j=1}^m$  only, throwing the rest out.



Given an inversion target y = F(x)

#### 1. Online chian creation

Create online chain from y.

$$y \xrightarrow{F} \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \xrightarrow{F} \bullet : \mathrm{DP}$$

Given an inversion target y = F(x)

#### 1. Online chian creation

Create online chain from y.

$$y \xrightarrow{F} \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \xrightarrow{F} \bullet : \mathrm{DP}$$

Check if it matches an ending point in  $\{EP_j\}$ .

Given an inversion target y = F(x)

#### 1. Online chian creation

Create online chain from y.

$$y \xrightarrow{F} \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \xrightarrow{F} \bullet : \mathrm{DP}$$

Check if it matches an ending point in  $\{EP_j\}$ .

$$m \begin{cases} \operatorname{SP}_1 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \cdots \xrightarrow{F} \circ = \operatorname{EP}_1 : \operatorname{DP} \\ \operatorname{SP}_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \cdots \xrightarrow{F} \xrightarrow{\operatorname{alarm}!!} = \operatorname{EP}_2 : \operatorname{DP} \\ \vdots \\ \operatorname{SP}_m = \circ \xrightarrow{F} \cdots \cdots \xrightarrow{F} \circ = \operatorname{EP}_m : \operatorname{DP} \end{cases}$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{\text{alarm!!}} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{alarm!!} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

$$SP_2 = \circ$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{\text{alarm!!}} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

$$\mathrm{SP}_2 = \circ \xrightarrow{F} \circ$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{\text{alarm!!}} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F}$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{\text{alarm!!}} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \xrightarrow{F}$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{alarm!!} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \xrightarrow{F} x$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{\text{alarm!!}} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \xrightarrow{F} \xrightarrow{x} \xrightarrow{F} y$$

#### 2. pre-computed chain regeneration

Expectation:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \qquad x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \xrightarrow{\text{alarm!!}} = EP_2$$
$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

pre-computed chain regeneration:

$$SP_2 = \circ \xrightarrow{F} \circ \xrightarrow{F} \cdots \xrightarrow{F} \xrightarrow{x} \xrightarrow{F} y$$

'x' is just found!!!

#### However,

Most case : Since F is not injective,  $x \neq x$ 

$$SP_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_2$$

$$\cancel{x} \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$

## However,

Most case : Since F is not injective,  $x \neq x$ 

$$SP_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_2$$

$$\cancel{x} \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$

- It is called a *false alarm*.

## However,

Most case : Since F is not injective,  $x \neq x$ 

$$SP_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_2$$

$$\cancel{x} \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$

- It is called a *false alarm*.

$$SP_2 = \circ \xrightarrow{F} \cdots$$

## However,

Most case : Since F is not injective,  $x \neq x$ 

$$SP_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_2$$

$$\cancel{x} \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$

- It is called a *false alarm*.

$$SP_2 = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots$$

#### However,

Most case : Since F is not injective,  $x \neq x$ 

$$\mathrm{SP}_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\mathrm{alarm!!}}{\bullet} = \mathrm{EP}_2$$

$$\cancel{x} \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$

- It is called a false alarm.

$$SP_2 = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots$$

#### However,

Most case : Since F is not injective,  $x \neq x$ 

$$\mathrm{SP}_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\mathrm{alarm!!}}{\bullet} = \mathrm{EP}_2$$

$$\cancel{x} \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$

- It is called a false alarm.

$$SP_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet = EP_2$$

#### However,

Most case : Since F is not injective,  $x \neq x$ 

$$SP_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_2$$

$$\cancel{x} \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$

- It is called a false alarm.

pre-computed chain regeneration:

$$SP_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet = EP_2$$

• Whole pre-computed chain is re-generated, but x' cannot be found.

#### The Rainbow Method: the rainbow matrix

#### Oechslin

ullet Choose parameters m,t satisfying mt=N. (Recall. In DP,  $m_Dt_D^2=N$ )

#### The Rainbow Method: the rainbow matrix

#### Oechslin

- ullet Choose parameters m,t satisfying mt=N. (Recall. In DP,  $m_Dt_D^2=N$ )
- 1. Create one big  $m \times t$  matrix using F and reduction functions  $r_i$ .

$$SP_{1} = \circ \xrightarrow{F_{1}} \circ \xrightarrow{F_{2}} \cdots \cdots \xrightarrow{F_{t}} \circ = EP_{1}$$

$$SP_{2} = \circ \xrightarrow{F_{1}} \circ \xrightarrow{F_{2}} \cdots \cdots \xrightarrow{F_{t}} \circ = EP_{2}$$

$$SP_m = \circ \xrightarrow{F_1} \circ \xrightarrow{F_2} \cdots \xrightarrow{F_t} \circ = EP_m$$

: A single rainbow matrix

,where  $F_i = r_i \circ F$ .



## The Rainbow Method: the rainbow matrix

#### Oechslin

- ullet Choose parameters m,t satisfying mt=N. (Recall. In DP,  $m_Dt_D^2=N$ )
- 1. Create one big  $m \times t$  matrix using F and reduction functions  $r_i$ .

$$SP_{1} = \circ \xrightarrow{F_{1}} \circ \xrightarrow{F_{2}} \cdots \cdots \xrightarrow{F_{t}} \circ = EP_{1}$$

$$SP_{2} = \circ \xrightarrow{F_{1}} \circ \xrightarrow{F_{2}} \cdots \cdots \xrightarrow{F_{t}} \circ = EP_{2}$$

$$\mathrm{SP}_m = \circ \xrightarrow{F_1} \circ \xrightarrow{F_2} \cdots \xrightarrow{F_t} \circ = \mathrm{EP}_m$$
  
: A single rainbow matrix

,where  $F_i = r_i \circ F$ .

2. Store  $\{(SP_j, EP_j)\}_{j=1}^m$  only, throwing the rest out.

The DP tradeoff,  $mt^2 = \mathbf{D}_{msc}N$ 

The DP tradeoff,  $mt^2 = D_{msc}N$ 

• The expected number of distinct points in a single DP matrix is  $D_{cr}mt$ , where

$$\mathbf{D}_{cr} = \frac{2}{\sqrt{1 + 2\mathbf{D}_{msc}} + 1}.$$

The DP tradeoff,  $mt^2 = D_{msc}N$ 

• The expected number of distinct points in a single DP matrix is  $D_{cr}mt$ , where

$$\mathbf{D}_{cr} = \frac{2}{\sqrt{1 + 2\mathbf{D}_{msc}} + 1}.$$

The success probability of the DP tradeoff is

$$D_{ps} = 1 - e^{-D_{cr}D_{pc}},$$

with pre-computation cost  $\mathrm{D}_{pc}N$ .

The DP tradeoff,  $mt^2 = D_{msc}N$ 

• The expected number of distinct points in a single DP matrix is  $D_{cr}mt$ , where

$$\mathbf{D}_{cr} = \frac{2}{\sqrt{1 + 2\mathbf{D}_{msc}} + 1}.$$

The success probability of the DP tradeoff is

$$D_{ps} = 1 - e^{-D_{cr}D_{pc}},$$

with pre-computation cost  $\mathrm{D}_{pc}N$ .

ullet The *time memory tradeoff curve* for the DP tradeoff is  ${
m TM}^2={
m D}_{tc}N^2$ , where

$$D_{tc} = (2 + \frac{1}{D_{msc}}) \frac{1}{D_{cr}^3} D_{ps} \{ \ln(1 - D_{ps}) \}^2.$$



The rainbow method,  $mt = R_{msc}N$ , l tables

The rainbow method,  $mt = R_{msc}N$ , l tables

• The success probability of the rainbow method is

$$\mathbf{R}_{ps} = 1 - \left(\frac{2}{2 + \mathbf{R}_{msc}}\right)^{2l}.$$

## Previous Results: online time complexity [HM10]

The rainbow method,  $mt = R_{msc}N$ , l tables

• The success probability of the rainbow method is

$$\mathbf{R}_{ps} = 1 - \left(\frac{2}{2 + \mathbf{R}_{msc}}\right)^{2l}.$$

• The time memory tradeoff curve for the rainbow method is  $TM^2 = R_{to}N^2$  where

$$\mathbf{R}_{tc} = \frac{l^3}{(2l+1)(2l+2)(2l+3)} \Big( \{ (2l-1) + (2l+1)\mathbf{R}_{msc} \} (2 + \mathbf{R}_{msc})^2 - 4\{ (2l-1) + l(2l+3)\mathbf{R}_{msc} \} \Big( \frac{2}{2 + \mathbf{R}_{msc}} \Big)^{2l} \Big).$$

$$m_D t_D^2 = N = m_R t_R$$

$$m_D t_D^2 = N = m_R t_R$$

For each entry  $(SP_i, EP_i)$  in the DP tradeoff and the rainbow method,

- $\bullet$   $\log m$  bits for the starting point,
- very small bits for the ending point.

are required.

$$m_D t_D^2 = N = m_R t_R$$

For each entry  $(SP_i, EP_i)$  in the DP tradeoff and the rainbow method,

- $\log m$  bits for the starting point,
- very small bits for the ending point.

are required.

Typically,  ${\rm log}m_R pprox {\rm log}m_D + {\rm log}t_D$  and  ${\rm log}t_R pprox {\rm log}t_D$  So,

$$\frac{\log m_R}{\log m_D} \approx \frac{\log m_D + \log t_D}{\log m_D} \approx 2$$

$$m_D t_D^2 = N = m_R t_R$$

For each entry  $(SP_i, EP_i)$  in the DP tradeoff and the rainbow method,

- $\log m$  bits for the starting point,
- very small bits for the ending point.

are required.

Typically, 
$${\rm log}m_R pprox {\rm log}m_D + {\rm log}t_D$$
 and  ${\rm log}t_R pprox {\rm log}t_D$  So,

$$\frac{\log m_R}{\log m_D} pprox \frac{\log m_D + \log t_D}{\log m_D} pprox 2$$
 and  $M_R = 2~M_D$ 

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{A \text{ larm!!}} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

$$SP_2 = \circ$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{A \text{ larm!!}} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

$$SP_2 = \circ \xrightarrow{F} \circ$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

$$SP_2 = \circ \xrightarrow{F} \circ \cdots \cancel{x}$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{A \text{ larm!!}} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

$$SP_2 = \circ \xrightarrow{F} \circ \cdots \xrightarrow{x} \xrightarrow{F} \circ$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

$$SP_2 = \circ \xrightarrow{F} \circ \cdots \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

$$SP_2 = \circ \xrightarrow{F} \circ \cdots \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F}$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$SP_{2} = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\text{alarm!!}}{\bullet} = EP_{2}$$

$$x \xrightarrow{F} y \xrightarrow{F} \circ \cdots$$
recorded

$$SP_2 = \circ \xrightarrow{F} \circ \cdots \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

Most case: false alarm

$$\mathrm{SP}_2 = \circ \xrightarrow{F} \cdots \qquad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \overset{\mathrm{alarm!!}}{\bullet} = \mathrm{EP}_2$$

$$\cancel{x} \xrightarrow{F} \cancel{y} \xrightarrow{F} \circ \cdots$$
recorded

pre-computed chain regeneration:

$$SP_2 = \circ \xrightarrow{F} \circ \cdots \xrightarrow{f} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet$$

(Recall: In the original DP tradeoff,

$$\mathrm{SP}_2 = \circ \xrightarrow{F} \cdots \quad \cancel{x} \xrightarrow{F} \circ \xrightarrow{F} \circ \cdots \xrightarrow{F} \bullet \cdots \xrightarrow{F} \quad \bullet \quad = \mathrm{EP}_2$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the original DP tradeoff] In the online phase,

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the original DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{2} \circ \xrightarrow{3} \circ \xrightarrow{4} \cdots \xrightarrow{s} \mathsf{DP}$$

2nd DP table

$$y \stackrel{s+1}{\to} \circ \stackrel{s+2}{\to} \cdots$$

• 3rd DP table

:

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the original DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{2} \circ \xrightarrow{3} \circ \xrightarrow{4} \cdots \xrightarrow{s} \mathsf{DP}$$

2nd DP table

$$y \stackrel{s+1}{\to} \circ \stackrel{s+2}{\to} \cdots$$

• 3rd DP table



Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the original DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{2} \circ \xrightarrow{3} \circ \xrightarrow{4} \cdots \xrightarrow{s} \mathsf{DP}$$

• 2nd DP table

$$y \stackrel{s+1}{\to} \circ \stackrel{s+2}{\to} \cdots$$

• 3rd DP table

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the original DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{2} \circ \xrightarrow{3} \circ \xrightarrow{4} \cdots \xrightarrow{s} \mathsf{DP}$$

2nd DP table

$$y \stackrel{s+1}{\to} \circ \stackrel{s+2}{\to} \cdots$$

• 3rd DP table

:

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y\stackrel{2}{\rightarrow}\circ\stackrel{t+2}{\rightarrow}\circ\cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:



Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y\stackrel{2}{\rightarrow}\circ\stackrel{t+2}{\rightarrow}\circ\cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:



Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y\stackrel{2}{\rightarrow}\circ\stackrel{t+2}{\rightarrow}\circ\cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:



Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y\stackrel{2}{\rightarrow}\circ\stackrel{t+2}{\rightarrow}\circ\cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:



Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y\stackrel{2}{\rightarrow}\circ\stackrel{t+2}{\rightarrow}\circ\cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:

$$y \xrightarrow{t} \circ \xrightarrow{t+t} \circ \cdots$$

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y\stackrel{2}{\rightarrow}\circ\stackrel{t+2}{\rightarrow}\circ\cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y \stackrel{2}{\rightarrow} \circ \stackrel{t+2}{\rightarrow} \circ \cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:

Variant of the DP tradeoff (Hoch, Shamir 09),

- A full record of the online chain is maintained during the online phase,
- The DP tables processed in parallel, rather than serially.

[the parallel DP tradeoff] In the online phase,

• 1st DP table

$$y \xrightarrow{1} \circ \xrightarrow{t+1} \circ \cdots$$

• 2nd DP table

$$y\stackrel{2}{\rightarrow}\circ\stackrel{t+2}{\rightarrow}\circ\cdots$$

• 3rd DP table

$$y \xrightarrow{3} \circ \xrightarrow{t+3} \circ \cdots$$
:



### The pD Tradeoff: the online time complexity

$$mt^2 = \mathbf{D}_{msc}N$$

## The pD Tradeoff: the online time complexity

$$mt^2 = \mathbf{D}_{msc}N$$

• The online chain creation of the pD Tradeoff require

$$t^2 \frac{\mathbf{D}_{ps}}{\mathbf{D}_{msc}\mathbf{D}_{cr}}$$

invocations of F.

## The pD Tradeoff: the online time complexity

$$mt^2 = \mathbf{D}_{msc}N$$

• The online chain creation of the pD Tradeoff require

$$t^2 \frac{\mathbf{D}_{ps}}{\mathbf{D}_{msc}\mathbf{D}_{cr}}$$

invocations of F.

 The number of iterations required by the pD tradeoff in dealing with alarms is

$$t^2 \frac{\ln(1 - D_{ps})}{D_{cr}} \int_0^1 (1 - D_{ps})^{1-u} \ln u \ du.$$

#### The pD Tradeoff: the tradeoff curve

$$mt^2 = \mathbf{D}_{msc}N$$

T=the total online time complexity

M= storage size

#### The pD Tradeoff: the tradeoff curve

$$mt^2 = \mathbf{D}_{msc}N$$

T=the total online time complexity

M= storage size

The time memory tradeoff curve for the pD tradeoff is  $\mathrm{TM}^2 = \mathrm{pD}_{tc}N^2$ ,

where

$$\mathrm{pD}_{tc} = \Big(\frac{\ln(1-\mathrm{D}_{ps})}{\mathrm{D}_{ps}} \int_0^1 (1-\mathrm{D}_{ps})^{1-u} \ln u \ du + \frac{1}{\mathrm{D}_{msc}} \Big) \frac{1}{\mathrm{D}_{cr}^3} \mathrm{D}_{ps} \{\ln(1-\mathrm{D}_{ps})\}^2.$$

#### The pD Tradeoff: the tradeoff curve

$$mt^2 = \mathbf{D}_{msc}N$$

T=the total online time complexity

M= storage size

The time memory tradeoff curve for the pD tradeoff is  $\mathrm{TM}^2=\mathrm{pD}_{tc}N^2$ ,

where

$$pD_{tc} = \left(\frac{\ln(1 - D_{ps})}{D_{ps}} \int_{0}^{1} (1 - D_{ps})^{1-u} \ln u \ du + \frac{1}{D_{msc}}\right) \frac{1}{D_{cr}^{3}} D_{ps} \{\ln(1 - D_{ps})\}^{2}.$$

Recall: In the original DP tradeoff,

#### pD versus DP

Since

$$\frac{\ln(1-\mathsf{D}_{ps})}{\mathsf{D}_{ps}} \int_0^1 (1-\mathsf{D}_{ps})^{1-u} \ln u \ du < 1 < 2,$$
 
$$\mathsf{DP} < \mathsf{pD}$$

the pD tradeoff will outperform the original DP tradeoff.

- $X_{tc} = \frac{TM^2}{N^2}$  is a measure of how efficiently the algorithm balances online time against storage requirements.
  - A smaller X<sub>tc</sub> implies a more efficient tradeoff.
- However, a better tradeoff efficiency usually requires a higher pre-computation cost and is not always desirable in practice.
- $\Rightarrow$  We have to consider both  $X_{tc}$  and  $X_{pc}$  for comparison.

- $X_{tc} = \frac{TM^2}{N^2}$  is a measure of how efficiently the algorithm balances online time against storage requirements.
  - ▶ A smaller  $X_{tc}$  implies a more efficient tradeoff.
- However, a better tradeoff efficiency usually requires a higher pre-computation cost and is not always desirable in practice.
- $\Rightarrow$  We have to consider both  $X_{tc}$  and  $X_{pc}$  for comparison.
  - In a fair manner, compare  $\mathtt{D}_{tc}$  with  $4\mathtt{R}_{tc}$ , since  $M_R=2M_D$ .

#### The pD tradeoff

$$\mathrm{pD}_{tc} = \left(\frac{\ln(1-\mathrm{D}_{ps})}{\mathrm{D}_{ps}}\int_{0}^{1}(1-\mathrm{D}_{ps})^{1-u}\ln u\ du + \frac{1}{\mathrm{D}_{msc}}\right)\frac{1}{\mathrm{D}_{cr}^{3}}\mathrm{D}_{ps}\{\ln(1-\mathrm{D}_{ps})\}^{2}$$

#### The rainbow method[HM10]

$$\begin{split} \mathbf{R}_{tc} &= \frac{l^3}{(2l+1)(2l+2)(2l+3)} \Big( \{ (2l-1) + (2l+1) \mathbf{R}_{msc} \} (2 + \mathbf{R}_{msc})^2 \\ &- 4 \{ (2l-1) + l(2l+3) \mathbf{R}_{msc} \} \Big( \frac{2}{2 + \mathbf{R}_{msc}} \Big)^{2l} \Big) \end{split}$$

,where

$$R_{ps} = 1 - \left(\frac{2}{2 + R_{max}}\right)^{2l}, \ D_{ps} = 1 - e^{-D_{cr}D_{pc}}.$$

$$\mathtt{D}_{pc}$$
 :  $\mathtt{pD}_{tc}$  ,  $\mathtt{R}_{pc}$  :  $4\mathtt{R}_{tc}$ 

Figure: the pD(line) and the rainbow(bullet)



$$\mathtt{D}_{pc}$$
 :  $\mathtt{pD}_{tc}$  ,  $\mathtt{R}_{pc}$  :  $4\mathtt{R}_{tc}$ 

Figure: the pD(line) and the rainbow(bullet)



$$\mathtt{D}_{pc}$$
 :  $\mathtt{pD}_{tc}$  ,  $\mathtt{R}_{pc}$  :  $4\mathtt{R}_{tc}$ 

Figure: the pD(line) and the rainbow(bullet)



$$\mathtt{D}_{pc}:\mathtt{pD}_{tc}$$
 ,  $\mathtt{R}_{pc}:4\mathtt{R}_{tc}$ 

Figure: the pD(line) and the rainbow(bullet)



#### **Conclusion**

- There are two added conditions in the pD in comparison with the DP.
  - online chain record
  - parallel processing
  - $\Rightarrow$  In the online phase, cost for resolving alarms is reduced more than half.
- The pD tradeoff is not likely to be preferable over the rainbow method under most situations.
- The only exception is when the success rate requirement is very low.
  - example. multi-target time memory tradeoff