Mars Attacks! Revisited.

Differential Attack 12 Rounds of the MARS Core and Defeating the Complex MARS Key Schedule

INDOCRYPT'11

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, <u>Jakob Wenzel</u>

Bauhaus-University Weimar, Germany

Motivation

What is MARS?

- block cipher with 128 bit block size
- developed 1998 by a team from IBM as a candidate for the Advanced Encryption Standard (AES)
- one of five finalists in the AES competition 2001
- no attacks from 2001 till 2009

Why is MARS an interesting subject to study?

• full AES is theoretically broken

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, <u>Jakob Wenzel</u> Mars Attacks! Revisited!

Why is MARS an interesting subject to study?

- full AES is theoretically broken
- many attacks on AES base on exploiting the relatively weak key schedule of AES

Why is MARS an interesting subject to study?

- full AES is theoretically broken
- many attacks on AES base on exploiting the relatively weak key schedule of AES
- MARS structure differs from other ciphers (mixing rounds)

Why is MARS an interesting subject to study?

- full AES is theoretically broken
- many attacks on AES base on exploiting the relatively weak key schedule of AES
- MARS structure differs from other ciphers (mixing rounds)
- key scheduler much stronger/ more complex than key scheduler of $\ensuremath{\mathsf{AES}}$

What we did

We propose two attacks:

• extend 11-round distinguisher by Kelsey et al to 12 core rounds

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, <u>Jakob Wenzel</u> Mars Attacks! Revisited!

What we did

We propose two attacks:

- extend 11-round distinguisher by Kelsey et al to 12 core rounds
- establish first key recovery attack on the MARS key schedule, using the distinguisher to recover the secret key

Outline

MARS

Distinguisher and Subkey Recovery

Recovery of the secret key

Attack Analysis

Conclusion

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, <u>Jakob Wenzel</u> Mars Attacks! Revisited!

MARS

Plaintext A .___ C_{i-1} B_{i-1} D_{i-1} **å** Оå Whitening Rounds Core Core Whitening Rounds åО-Ciphertext A, B C D,

- 128 bit block size
- internal state: 4 × 32 bit words (A, B, C, D)

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, Jakob Wenzel

Mars Attacks! Revisited!

MARS - Structure of the Core Rounds

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, Jakob Wenzel

Mars Attacks! Revisited!

Distinguisher and Subkey Recovery

Exploits differential properties of the MARS core

- 3-round differential characteristic with probability 1 $(0,0,0,\alpha) \rightarrow (\beta,0,0,0)$
- distinguisher uses the 3-rounds characteristic twice, for rounds 4 - 6 and 7 - 9
- differences, if multiplied with a constant, propagate only in the most significant bits (used in round 10)

For each of the 2^{154} subkey candidates of the first three rounds do:

1. choose 2^{56} texts with arbitrary differences (0, a, b, 0)

For each of the 2^{154} subkey candidates of the first three rounds do:

- 1. choose 2^{56} texts with arbitrary differences (0, a, b, 0)
- 2. partially decrypt (0, a, b, 0) to reach (A, B, C, D)

For each of the 2^{154} subkey candidates of the first three rounds do:

- 1. choose 2^{56} texts with arbitrary differences (0, a, b, 0)
- 2. partially decrypt (0, *a*, *b*, 0) to reach (*A*, *B*, *C*, *D*)
- 3. create 2^{56} batches with 302 texts each with difference (A, B, C, D) between batches

For each of the 2^{154} subkey candidates of the first three rounds do:

 partially decrypt all ciphertexts with each of the 2³² subkey candidates for Round 12 and extract the bit "*a*" for each ciphertext

For each of the 2^{154} subkey candidates of the first three rounds do:

- partially decrypt all ciphertexts with each of the 2³² subkey candidates for Round 12 and extract the bit "*a*" for each ciphertext
- build 2⁵⁶ strings of 302 "a" bits for each batch

For each of the 2^{154} subkey candidates of the first three rounds do:

 store and sort the resulting bit strings in order of the chosen plaintexts

For each of the 2^{154} subkey candidates of the first three rounds do:

- store and sort the resulting bit strings in order of the chosen plaintexts
- compare the bit strings pairwise to identify the correct subkey candidate

What we got from the Distinguisher

valid subkeys for

$\{K_4^+, K_5^*, K_6^+, K_7^*, K_9^*, K_{26}^+, K_{27}^*(9 \text{ bit})\}.$

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, <u>Jakob Wenzel</u> Mars Attacks! Revisited!

MARS Key Schedule

- expands 256-bit secret key to 40 subkeys
- four iterations, each iteration generates 10 round keys

MARS Key Schedule

- expands 256-bit secret key to 40 subkeys
- four iterations, each iteration generates 10 round keys
- uses internal array T[0...14] with 15×32 -bit words

MARS Key Schedule

- expands 256-bit secret key to 40 subkeys
- four iterations, each iteration generates 10 round keys
- uses internal array T[0...14] with 15×32 -bit words
- three phases per iteration:
 - linear transformation
 - four stirring rounds
 - removing patterns from multiplication keys

• Initialization ($T[0] \dots T[7] = \text{key}; T[8] \dots T[14] = 0$)

 Initialization (*T*[0]...*T*[7] = key; *T*[8]...*T*[14] = 0) and four iterations of...

• Linear transformation

for (i = 0, ..., 14) $T[i] = T[i] \oplus ((T[(i-7) \mod 15]) \oplus T[(i-2) \mod 15]) \ll 3) \oplus (4i+j)$

- Initialization (*T*[0]...*T*[7] = key; *T*[8]...*T*[14] = 0) and four iterations of...
- Linear transformation

for $(i = 0, \dots, 14)$ $T[i] = T[i] \oplus ((T[(i-7) \mod 15] \oplus T[(i-2) \mod 15]) \lll 3) \oplus (4i+j)$

• Four stirring rounds

for
$$(k = 1, ..., 4)$$

for $(i = 0, ..., 14)$
 $T[i] = (T[i] + S[low 9 bits of $T[(i - 1) \mod 15]]) \ll 9$$

 Initialization (*T*[0]...*T*[7] = key; *T*[8]...*T*[14] = 0) and four iterations of...

• Linear transformation

for (i = 0, ..., 14) $T[i] = T[i] \oplus ((T[(i-7) \mod 15]) \oplus T[(i-2) \mod 15]) \iff 3) \oplus (4i+j)$

• Four stirring rounds

for
$$(k = 1, ..., 4)$$

for $(i = 0, ..., 14)$
 $T[i] = (T[i] + S[low 9 bits of T[(i - 1) mod 15]]) \iff 9$

• Storing next 10 keys

for
$$(i = 0, ..., 9)$$

 $K[10j + i] = T[4i \mod 15]$

 Initialization (*T*[0]...*T*[7] = key; *T*[8]...*T*[14] = 0) and four iterations of...

• Linear transformation

for $(i = 0, \dots, 14)$ $T[i] = T[i] \oplus ((T[(i-7) \mod 15]) \oplus T[(i-2) \mod 15]) \ll 3) \oplus (4i+j)$

• Four stirring rounds

for
$$(k = 1, ..., 4)$$

for $(i = 0, ..., 14)$
 $T[i] = (T[i] + S[low 9 bits of T[(i - 1) mod 15]]) \iff 9$

• Storing next 10 keys

for
$$(i = 0, ..., 9)$$

 $K[10j + i] = T[4i \mod 15]$

• Modification of multiplication keys

- Kelsey et al. finished after recovering subkeys:
 - subkeys from 3rd and 4th iteration

- Kelsey et al. finished after recovering subkeys:
 - subkeys from 3rd and 4th iteration
- difficult to invert multiple iterations

- Kelsey et al. finished after recovering subkeys:
 - subkeys from 3rd and 4th iteration
- difficult to invert multiple iterations
- idea: mount a Meet-in-the-Middle-Attack on the first iteration

 Initialization (*T*[0]...*T*[7] = key; *T*[8]...*T*[14] = 0) and four iterations of...

• Linear transformation

for (i = 0, ..., 14) $T[i] = T[i] \oplus ((T[(i-7) \mod 15]) \oplus T[(i-2) \mod 15]) \iff 3) \oplus (4i+j)$

• Four stirring rounds

for (k = 1, ..., 4)for (i = 0, ..., 14) $T[i] = (T[i] + S[low 9 bits of T[(i - 1) mod 15]]) \ll 9$

• Storing next 10 keys

for
$$(i = 0, ..., 9)$$

 $K[10j + i] = T[4i \mod 15]$

• Modification of multiplication keys

MITM - Forward Step

T[0]	27			
T[1]	27			
T[2]	24			3
T[3]	24			3
T[4]	21			6
T[5]	21			6
T[6]	18	5		9
T[7]	18			3 3
T[9]	24		Г	3
1[0]	24			-
T[9]	15		٦	6
T[9] T[10]	15 21		4	6
T[9] T[10] T[11]	15 21 12			6 6 9
T[9] T[10] T[11] T[12]	15 21 12 18			6 6 9 9
T[9] T[10] T[11] T[12] T[13]	15 21 12 18 9			6 6 9 9 12

• Linear Transformation:

 $T[i] = T[i] \oplus ((T[i - 7 \mod 15] \oplus T[i - 2 \mod 15]) \lll 3) \oplus (4i + j)$

MITM - Forward Step

• First Stirring Round:

 $T[i] = (T[i] + S[\text{low 9 bits of } T[i - 1 \mod 15]]) \iff 9$

MITM - Forward Step

T[0]	27			
1[0]	27		_	
T[1]	27			
T[2]	24			3
T[3]	24			3
T[4]	21		Τ	6
T[5]	21			6
T[6]	18	5		9
T[7]	18		Τ	3 3
T[8]	24			3
T[9]	15		Т	6
T[10]	21			6
T[11]	12			9
T[12]	18			9
T[13]	9			12
T[14]	15			6

T[0]	18						9	
T[1]	18			9				
T[2]	15				Т	12		
T[3]	15	15				12		
T[4]	12			Τ			15	
T[5]	12			Τ			15	
T[6]	32							
T[7]	9			Τ			15	
T[8]	15				Τ		12	
T[9]	6			Τ			15	
T[10]	12			Τ			15	
T[11]	3						18	
T[12]	9		Т				18	
T[13]							21	
T[14]	6						15	

T[0]	9					18	3
T[1]	9					18	3
T[2]	6					21	
T[3]	6					21	
T[4]	3					24	Ļ
T[5]	3					24	Ļ
T[6]				32			
T[7]		Т				24	Ļ
T[8]	6					21	
T[9]				21			
	с	om	para	ble bit	sequ	ien	ce
	k	no	wn b	it sequ	ience	;	

unknown bit sequence guessed bit sequence

• Second Stirring Round:

 $T[i] = (T[i] + S[\text{low 9 bits of } T[i - 1 \mod 15]]) \ll 9$

Mars Attacks! Revisited!

• our distinguisher recovers five subkeys from first iteration: $\{K_4^+,K_5^*,K_6^+,K_7^*,K_9^*\}$

- our distinguisher recovers five subkeys from first iteration: $\{K_4^+,K_5^*,K_6^+,K_7^*,K_9^*\}$
- attack uses four subkeys that are mapped to T[i]s as follows: $\{K_4^+, K_5^*, K_6^+, K_9^*\} \rightarrow \{T[1], T[5], T[9], T[6]\}$

• Modification of multiplication keys

- invert multiplication keys $\{K_5^*, K_9^*\}$
- lookup table for $\mathsf{K} \to \mathsf{T}$ projections
- max. $102 \approx 2^7$ candidates
- 2¹⁴ candidates

• Modification of multiplication keys

- invert multiplication keys $\{K_5^*, K_9^*\}$
- lookup table for $\mathsf{K} \to \mathsf{T}$ projections
- max. $102 \approx 2^7$ candidates
- 2¹⁴ candidates

• Two stirring rounds backwards

- require least significant nine bits for each of our four words T[i] for each stirring round
- know the bits for T[6] after guessing T[5]
- $2^{9\cdot 3\cdot 2}$ op. = 2^{54} op.

•
$$2^{14} \cdot 2^{54}$$
 op. = 2^{68} op. for backward step

Distinguisher operations:

- 2^{65} Texts $\cdot 2^{186}$ Keys $\cdot 3$ Executions $\approx 2^{252}$ Encryptions
- 3 executions are required as one 3-round differential for round 7-9 has probability $\neq 1$

Forward step:

- guessing the bits of $T[0] \dots T[7]$: 2^{210}
- guessing 5 bit of T[6] and 3 bit of T[7]: 2^8
- carry bit for 23 additions: 2²³
- ▶ summarize: 2²⁴¹

Forward step:

- guessing the bits of $T[0] \dots T[7]$: 2^{210}
- guessing 5 bit of T[6] and 3 bit of T[7]: 2^8
- carry bit for 23 additions: 2²³
- ▶ summarize: 2²⁴¹

Backward step:

- ▶ nine bits for T[0], T[4], T[8] (two stirring rounds): 2⁵⁴
- multiplication keys (from possible table entries): 2¹⁴
- ▶ summarize: 2⁶⁸

• probability of finding a matching pair of 107 bits is 2^{-107} .

- probability of finding a matching pair of 107 bits is 2^{-107} .
- combine forward and backward step:

$$2^{241} \cdot 2^{68} \cdot 2^{-107} = 2^{202}.$$

- probability of finding a matching pair of 107 bits is 2⁻¹⁰⁷.
- combine forward and backward step:

$$2^{241} \cdot 2^{68} \cdot 2^{-107} = 2^{202}.$$

- We gather 2^{202} candidates for 210 bits of the secret key 2^{202} 2^{46} 2^{248} O f f f a line with
- $2^{202} \cdot 2^{46} = 2^{248}$ Op. for final testing

Conclusion

- we have . . .
 - extended the 11-round attack by Kelsey et al to a differential attack on 12 rounds
 - suggested a MITM attack on the MARS key schedule that allows to recover the secret key more efficiently than exhaustive search

Recent Attacks on MARS/Analysis

Туре	Rounds	Texts	Bytes	Op.	Reference
Differential	12C	2 ⁶⁵	2 ⁶⁹	2 ²⁵²	this work
Amp. Boomerang	11C	2 ⁶⁵	2 ⁷⁰	2 ²²⁹	[KKS00]
Amp. Boomerang	6M, 6C	2 ⁶⁹	2 ⁷³	2 ¹⁹⁷	[KS00]
MITM	16M, 5C	8	2 ²³⁶	2 ²³²	[KS00]
Diff. MITM	16M, 5C	2 ⁵⁰	2 ¹⁹⁷	2 ²⁴⁷	[KS00]
Impossible Diff.	8C	-	-	-	[BF00]
Differential	8M, 8C	2 ¹⁰⁵	2 ¹⁰⁹	2 ²³¹	[Pes09]

Table: Op: operations, C: core rounds, M: mixing rounds