Mars Attacks! Revisited.

Differential Attack 12 Rounds of the MARS Core and Defeating the Complex MARS Key Schedule

INDOCRYPT'11

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, Jakob Wenzel

Bauhaus-University Weimar, Germany

Motivation

What is MARS?

- block cipher with 128 bit block size
- developed 1998 by a team from IBM as a candidate for the Advanced Encryption Standard (AES)
- one of five finalists in the AES competition 2001
- no attacks from 2001 till 2009

Why is MARS an interesting subject to study?

• full AES is theoretically broken

Why is MARS an interesting subject to study?

- full AES is theoretically broken
- many attacks on AES base on exploiting the relatively weak key schedule of AES

Why is MARS an interesting subject to study?

- full AES is theoretically broken
- many attacks on AES base on exploiting the relatively weak key schedule of AES
- MARS structure differs from other ciphers (mixing rounds)

Why is MARS an interesting subject to study?

- full AES is theoretically broken
- many attacks on AES base on exploiting the relatively weak key schedule of AES
- MARS structure differs from other ciphers (mixing rounds)
- key scheduler much stronger/ more complex than key scheduler of AES

What we did

We propose two attacks:

• extend 11-round distinguisher by Kelsey et al to 12 core rounds

What we did

We propose two attacks:

- extend 11-round distinguisher by Kelsey et al to 12 core rounds
- establish first key recovery attack on the MARS key schedule, using the distinguisher to recover the secret key

Outline

[MARS](#page-10-0)

[Distinguisher and Subkey Recovery](#page-12-0)

[Recovery of the secret key](#page-20-0)

[Attack Analysis](#page-41-0)

[Conclusion](#page-47-0)

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, Jakob Wenzel [Mars Attacks! Revisited!](#page-0-0) 5 / 27

MARS

Plaintext A_{i-1} B_{i−1} C_{i−1} D_{i−1} ₫ Ω Whitening Rounds **Core Core** Whitening Rounds \circ Ciphertext Ai Bi Ci Di

- 128 bit block size
- internal state: 4×32 bit words (A, B, C, D)

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, Jakob Wenzel

[Mars Attacks! Revisited!](#page-0-0) 6 / 27

MARS - Structure of the Core Rounds

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, Jakob Wenzel

[Mars Attacks! Revisited!](#page-0-0) 7 / 27

Distinguisher and Subkey Recovery

Exploits differential properties of the MARS core

- 3-round differential characteristic with probability 1 $(0, 0, 0, \alpha) \rightarrow (\beta, 0, 0, 0)$
- distinguisher uses the 3-rounds characteristic twice, for rounds $4 - 6$ and $7 - 9$
- differences, if multiplied with a constant, propagate only in the most significant bits (used in round 10)

For each of the 2^{154} subkey candidates of the first three rounds do:

1. choose 2^{56} texts with arbitrary differences $(0, a, b, 0)$

For each of the 2^{154} subkey candidates of the first three rounds do:

- 1. choose 2^{56} texts with arbitrary differences $(0, a, b, 0)$
- 2. partially decrypt $(0, a, b, 0)$ to reach (A, B, C, D)

For each of the 2^{154} subkey candidates of the first three rounds do:

- 1. choose 2^{56} texts with arbitrary differences $(0, a, b, 0)$
- 2. partially decrypt $(0, a, b, 0)$ to reach (A, B, C, D)
- 3. create 2^{56} batches with 302 texts each with difference (A, B, C, D) between batches

For each of the 2^{154} subkey candidates of the first three rounds do:

5. partially decrypt all ciphertexts with each of the 2^{32} subkey candidates for Round 12 and extract the bit "a" for each ciphertext

For each of the 2^{154} subkey candidates of the first three rounds do:

- 5. partially decrypt all ciphertexts with each of the 2^{32} subkev candidates for Round 12 and extract the bit "a" for each ciphertext
- 6. build 2^{56} strings of 302 "a" bits for each batch

For each of the 2^{154} subkey candidates of the first three rounds do:

7. store and sort the resulting bit strings in order of the chosen plaintexts

For each of the 2^{154} subkey candidates of the first three rounds do:

- 7. store and sort the resulting bit strings in order of the chosen plaintexts
- 8. compare the bit strings pairwise to identify the correct subkey candidate

What we got from the Distinguisher

valid subkeys for

$\{K_4^+, K_5^*, K_6^+, K_7^*, K_9^*, K_{26}^+, K_{27}^*(9 \text{ bit})\}.$

MARS Key Schedule

- expands 256-bit secret key to 40 subkeys
- • four iterations, each iteration generates 10 round keys

MARS Key Schedule

- expands 256-bit secret key to 40 subkeys
- four iterations, each iteration generates 10 round keys
- uses internal array $T[0 \dots 14]$ with 15×32 -bit words

MARS Key Schedule

- expands 256-bit secret key to 40 subkeys
- four iterations, each iteration generates 10 round keys
- uses internal array $T[0 \dots 14]$ with 15×32 -bit words
- three phases per iteration:
	- \blacktriangleright linear transformation
	- \blacktriangleright four stirring rounds
	- \triangleright removing patterns from multiplication keys

• Initialization $(T[0] \dots T[7] = \text{key}; T[8] \dots T[14] = 0)$

• Initialization $(T[0] \dots T[7] = \text{key}; T[8] \dots T[14] = 0)$ and four iterations of. . .

• Linear transformation

for $(i = 0, \ldots, 14)$ $T[i] = T[i] \oplus ((T[(i-7) \mod 15] \oplus T[(i-2) \mod 15]) \ll 3) \oplus (4i+j)$

• Initialization $(T[0] \dots T[7] = \text{key}; T[8] \dots T[14] = 0)$ and four iterations of. . .

• Linear transformation

for $(i = 0, \ldots, 14)$ $T[i] = T[i] \oplus ((T[(i-7) \mod 15] \oplus T[(i-2) \mod 15]) \ll 3) \oplus (4i+j)$

• Four stirring rounds

for
$$
(k = 1, ..., 4)
$$

for $(i = 0, ..., 14)$
 $T[i] = (T[i] + S[low 9 bits of T[(i - 1) mod 15]]) \lll 9$

• Initialization $(T[0] \dots T[7] = \text{key}; T[8] \dots T[14] = 0)$ and four iterations of. . .

• Linear transformation

for $(i = 0, \ldots, 14)$ $T[i] = T[i] \oplus ((T[(i-7) \mod 15] \oplus T[(i-2) \mod 15]) \ll 3) \oplus (4i+j)$

• Four stirring rounds

for
$$
(k = 1, ..., 4)
$$

for $(i = 0, ..., 14)$
 $T[i] = (T[i] + S[low 9 bits of T[(i - 1) mod 15]]) \lll 9$

• Storing next 10 keys

for
$$
(i = 0, ..., 9)
$$

\n $K[10j + i] = T[4i \mod 15]$

• Initialization $(T[0] \dots T[7] = \text{key}; T[8] \dots T[14] = 0)$ and four iterations of. . .

• Linear transformation

for $(i = 0, \ldots, 14)$ $T[i] = T[i] \oplus ((T[(i-7) \mod 15] \oplus T[(i-2) \mod 15]) \ll 3) \oplus (4i+j)$

• Four stirring rounds

for
$$
(k = 1, ..., 4)
$$

for $(i = 0, ..., 14)$
 $T[i] = (T[i] + S[low 9 bits of T[(i - 1) mod 15]]) \lll 9$

• Storing next 10 keys

for
$$
(i = 0, ..., 9)
$$

\n $K[10j + i] = T[4i \mod 15]$

• Modification of multiplication keys

- Kelsey et al. finished after recovering subkeys:
	- subkeys from 3rd and 4th iteration

- Kelsey et al. finished after recovering subkeys:
	- subkeys from 3rd and 4th iteration
- difficult to invert multiple iterations

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, Jakob Wenzel [Mars Attacks! Revisited!](#page-0-0) 15 / 27

- Kelsey et al. finished after recovering subkeys:
	- subkeys from 3rd and 4th iteration
- difficult to invert multiple iterations
- idea: mount a Meet-in-the-Middle-Attack on the first iteration

• Initialization $(T[0] \dots T[7] = \text{key}; T[8] \dots T[14] = 0)$ and four iterations of. . .

• Linear transformation

for $(i = 0, \ldots, 14)$ $T[i] = T[i] \oplus ((T[(i-7) \mod 15] \oplus T[(i-2) \mod 15]) \ll 3 \oplus (4i+i)$

• Four stirring rounds

for $(k = 1, ..., 4)$ for $(i = 0, \ldots, 14)$ $T[i] = (T[i] + S[low 9 bits of T[(i - 1) mod 15]]) \ll 9$

• Storing next 10 keys

$$
\begin{array}{c} \text{for } (i = 0, \ldots, 9) \\ \text{K}[10j + i] = \mathcal{T}[4i \text{ mod } 15] \end{array}
$$

• Modification of multiplication keys

MITM - Forward Step

• Linear Transformation:

 $T[i] = T[i] \oplus ((T[i - 7 \mod 15] \oplus T[i - 2 \mod 15]) \lll 3) \oplus (4i + j)$

MITM - Forward Step

• First Stirring Round:

 $T[i] = (T[i] + S[low 9 bits of T[i - 1 mod 15]]) \lll 9$

[Mars Attacks! Revisited!](#page-0-0) 18 / 27

MITM - Forward Step

• Second Stirring Round:

 $T[i] = (T[i] + S[low 9 bits of T[i - 1 mod 15]]) \lll 9$

[Mars Attacks! Revisited!](#page-0-0) 19 / 27

• our distinguisher recovers five subkeys from first iteration: $\{K_4^+, K_5^*, K_6^+, K_7^*, K_9^*\}$

- our distinguisher recovers five subkeys from first iteration: $\{K_4^+, K_5^*, K_6^+, K_7^*, K_9^*\}$
- attack uses four subkeys that are mapped to $T[i]$ s as follows: $\{K_4^+, K_5^*, K_6^+, K_9^*\} \rightarrow \{T[1], T[5], T[9], T[6]\}$

• Modification of multiplication keys

- invert multiplication keys $\{K_5^*, K_9^*\}$
- lookup table for $K \rightarrow T$ projections
- max. $102 \approx 2^7$ candidates
- \bullet 2¹⁴ candidates

• Modification of multiplication keys

- invert multiplication keys $\{K_5^*, K_9^*\}$
- lookup table for $K \rightarrow T$ projections
- max. $102 \approx 2^7$ candidates
- \bullet 2¹⁴ candidates

• Two stirring rounds backwards

- require least significant nine bits for each of our four words $T[i]$ for each stirring round
- know the bits for $T[6]$ after guessing $T[5]$
- $2^{9\cdot3\cdot2}$ op. $= 2^{54}$ op.

•
$$
2^{14} \cdot 2^{54}
$$
 op. = 2^{68} op. for backward step

Distinguisher operations:

- 2⁶⁵ Texts $\cdot 2^{186}$ Keys $\cdot 3$ Executions $\approx 2^{252}$ Encryptions
- 3 executions are required as one 3-round differential for round 7-9 has probability $\neq 1$

Forward step:

- **E** guessing the bits of $T[0] \dots T[7]$: 2²¹⁰
- guessing 5 bit of $T[6]$ and 3 bit of $T[7]$: 2^8
- carry bit for 23 additions: 2^{23}
- Summarize: 2^{241}

Forward step:

- **E** guessing the bits of $T[0] \dots T[7]$: 2²¹⁰
- guessing 5 bit of T[6] and 3 bit of T[7]: 2^8
- ightharpoonup carry bit for 23 additions: 2^{23}
- Summarize: 2^{241}

Backward step:

- ightharpoonup incorright nine bits for $T[0], T[4], T[8]$ (two stirring rounds): 2^{54}
- **In** multiplication keys (from possible table entries): 2^{14}
- Summarize: 2^{68}

• probability of finding a matching pair of 107 bits is 2^{-107} .

- probability of finding a matching pair of 107 bits is 2^{-107} .
- combine forward and backward step:

$$
2^{241} \cdot 2^{68} \cdot 2^{-107} = 2^{202}.
$$

- probability of finding a matching pair of 107 bits is 2^{-107} .
- combine forward and backward step:

$$
2^{241} \cdot 2^{68} \cdot 2^{-107} = 2^{202}.
$$

• We gather 2^{202} candidates for 210 bits of the secret key • $2^{202} \cdot 2^{46} = 2^{248}$ Op. for final testing

Conclusion

- \bullet we have \dots
	- extended the 11-round attack by Kelsey et al to a differential attack on 12 rounds
	- suggested a MITM attack on the MARS key schedule that allows to recover the secret key more efficiently than exhaustive search

Recent Attacks on MARS/Analysis

Table: Op: operations, C: core rounds, M: mixing rounds